Энциклопедия
Энциклопедия
Воздушно-пенный огнетушитель
Воздушно-пенный огнетушитель — огнетушитель с зарядом водного раствора пенообразующих добавок и специальнымнасадком, в котором за счёт эжекции воздуха образуется и формируется струя ВМП (воздушно-механической пены) низкой и средней кратности. Воздушно-пенный огнетушитель предназначен длятушения пожаров твёрдых (класс А) и жидкихгорючих веществ (класс В). В комплект огнетушителя входят сменныегенераторы пены средней или низкой кратности. Для заправки огнетушителя в качестве зарядов применяются однокомпонентное или многокомпонентное вещества, используемые для приготовления огнетушащего раствора.Заряды для воздушно-пенногоогнетушителя изготавливают на основе углеводородных или фторсодержащихПАВ, при этом использование последних приводит к большой эффективности огнетушителя, особенно при тушении жидких горючих веществ. В то же время воздушно-пенные огнетушители нельзя применять дляликвидации пожаров электрооборудования, находящегося под напряжением (класс Е), для тушения сильно нагретых или расплавленных веществ, а также веществ, бурно реагирующих сводой.
По принципу вытеснения огнетушащего раствора, воздушно-пенные огнетушители подразделяются на закачные, раствор и корпус которого постоянно находится под давлением вытесняющего газа, и с баллоном высокого давления.
Литература: ГОСТ Р 51017-97. Техника пожарная. Огнетушители передвижные. Общие технические требования. Методы испытаний; ГОСТ Р 51057-2001. Техника пожарная. Огнетушители переносные. Общие технические требования. Методы испытаний; НПБ 305-2001. Техника пожарная. Заряды к воздушно-пенным огнетушителям и установкам пенного пожаротушения. Общие технические требования. Методы испытаний.
По принципу вытеснения огнетушащего раствора, воздушно-пенные огнетушители подразделяются на закачные, раствор и корпус которого постоянно находится под давлением вытесняющего газа, и с баллоном высокого давления.
Литература: ГОСТ Р 51017-97. Техника пожарная. Огнетушители передвижные. Общие технические требования. Методы испытаний; ГОСТ Р 51057-2001. Техника пожарная. Огнетушители переносные. Общие технические требования. Методы испытаний; НПБ 305-2001. Техника пожарная. Заряды к воздушно-пенным огнетушителям и установкам пенного пожаротушения. Общие технические требования. Методы испытаний.
Энциклопедия
Воздуховоды огнестойкие
Воздуховоды огнестойкие — каналы систем общеобменной, местной, технологической, противодымной и аварийнойвентиляции, систем кондиционирования с нормируемымипределами огнестойкости. Огнестойкость конструкций воздуховодов указанных систем нормируется для транзитных воздуховодов и воздуховодов систем приточно-вытяжной противодымной вентиляции. Как правило, основой для конструкций огнестойких воздуховодов являются сборные воздуховоды, изготовленные из листовой стали толщиной не менее 0,8 мм (в зависимости от рабочего давления и нагрузки, определяемой собственным весом и видом наносимого теплоогнезащитного покрытия (ТОП). Предел огнестойкости конструкций воздуховодов устанавливается по потерям теплоизолирующей способности и целостности (плотности).
Теплоогнезащишые покрытия, применяемые в конструкциях огнестойких воздуховодов, можно условно разделить на следующие группы:
Литература: НПБ 239-97. Воздуховоды. Методы испытаний на огнестойкость
Теплоогнезащишые покрытия, применяемые в конструкциях огнестойких воздуховодов, можно условно разделить на следующие группы:
- ТОП на основе жидкостекольных и силикофосфатных связующих;
- ТОП из плитных материалов;
- ТОП из минераловатных материалов (плиты, маты);
- комбинированные ТОП (плитные или минераловатные материалы с одно- или двухсторонней обмазкой огнезащитными составами на силикофосфатном связующем или на жидком стекле);
- ТОП, получаемые методами полусухого торкретирования;
- ТОП, получаемые путём оштукатуривания воздуховодов спецальными составами.
Литература: НПБ 239-97. Воздуховоды. Методы испытаний на огнестойкость
Энциклопедия
Возгорание
Возгорание — началогорения материала под действиемисточника зажигания с температурой вышетемпературы самовозгорания илитемпературы самовоспламенения и с достаточной энергией зажигания (вышеМЭЗ для данного материала). Возгорание принципиально отличается отсамовозгорания (самопроизвольного возникновения горения в отсутствие внешнего источника зажигания). См.Самовозгорание.
Литература: Пожаровзрывоопасность веществ и материалов и средства их тушения: Справ. изд. /Под ред. А.Н. Баратова и А.Я. Корольченко. В 2-х кн. М., 1990; Боратов А.Н. Горение — Пожар — Взрыв — Безопасность. М., 2003.
Литература: Пожаровзрывоопасность веществ и материалов и средства их тушения: Справ. изд. /Под ред. А.Н. Баратова и А.Я. Корольченко. В 2-х кн. М., 1990; Боратов А.Н. Горение — Пожар — Взрыв — Безопасность. М., 2003.
Энциклопедия
Водяной пар
Водяной пар — широко используется для целейпожаротушения, которое основано на флегматизации зоныгорения, т. е. на разбавлении концентрациикислорода до пределов, при которых продолжение горения становится невозможным. Наряду с этим происходит некоторое охлаждение зоны горения, а также механический отрывпламени струями пара, выходящими с большой скоростью из насадков или отверстий. Исходя из огнетушащего эффекта водяного пара, установки этого типа называютустановками объёмного пожаротушения.
Наибольший эффект применения пара достигается в достаточно герметизированных слабо вентилируемых помещениях объёмом до 100 м3 с использованием влажного насыщенного пара. Возможно также применение перегретого и мятого (отработавшего) пара. При пожаре в помещении,ограждающие строительные конструкции которого нагреты выше температуры конденсации пара при атмосферном давлении, эффект тушения достигается объёмной концентрацией пара, равной 3. При более низких температурах происходит интенсивная конденсация пара, в результате чегопожар может быть не потушен. Поэтому расход пара принимается с учётом возможной конденсации его в зависимости от герметичности помещений. В этом случае фактическая объёмная концентрация пара в начальный момент выпуска его в помещение будет вышеогнетушащей концентрации.
Паровое пожаротушение широко применяется на объектах, где по условиям совместимости допускается контакт пара с веществами и материалами, подлежащими тушению, а мощности паросилового хозяйства позволяют расходовать пар для целей пожаротушения без ущерба для основного производства и без дополнительных затрат на сооружение магистрального паропровода большой протяжённости. Примерами таких объектов являются суда, предприятия химической, нефтехимической и нефтеперерабатывающей промышленности, а также окрасочные и сушильные камеры ряда промышленных отраслей (деревообработка, производство горючих стройматериалов, домостроительные предприятия, автомобилестроение и др.). Многие технологические процессы и аппараты, особенно огневого действия (например, трубчатые печи), а также открытые установки на нефтеперерабатывающих заводах длялокализации пожара обеспечиваются устройствами, создающими паровые завесы.
Литература: Баскаков А.П., Берг Б.В., Витте O.K. и др. Теплотехника М., 1982; Бубырь Н.Ф., Иванов А.Ф., Бабуров В.П. Пожарная автоматика М., 1977.
Наибольший эффект применения пара достигается в достаточно герметизированных слабо вентилируемых помещениях объёмом до 100 м3 с использованием влажного насыщенного пара. Возможно также применение перегретого и мятого (отработавшего) пара. При пожаре в помещении,ограждающие строительные конструкции которого нагреты выше температуры конденсации пара при атмосферном давлении, эффект тушения достигается объёмной концентрацией пара, равной 3. При более низких температурах происходит интенсивная конденсация пара, в результате чегопожар может быть не потушен. Поэтому расход пара принимается с учётом возможной конденсации его в зависимости от герметичности помещений. В этом случае фактическая объёмная концентрация пара в начальный момент выпуска его в помещение будет вышеогнетушащей концентрации.
Паровое пожаротушение широко применяется на объектах, где по условиям совместимости допускается контакт пара с веществами и материалами, подлежащими тушению, а мощности паросилового хозяйства позволяют расходовать пар для целей пожаротушения без ущерба для основного производства и без дополнительных затрат на сооружение магистрального паропровода большой протяжённости. Примерами таких объектов являются суда, предприятия химической, нефтехимической и нефтеперерабатывающей промышленности, а также окрасочные и сушильные камеры ряда промышленных отраслей (деревообработка, производство горючих стройматериалов, домостроительные предприятия, автомобилестроение и др.). Многие технологические процессы и аппараты, особенно огневого действия (например, трубчатые печи), а также открытые установки на нефтеперерабатывающих заводах длялокализации пожара обеспечиваются устройствами, создающими паровые завесы.
Литература: Баскаков А.П., Берг Б.В., Витте O.K. и др. Теплотехника М., 1982; Бубырь Н.Ф., Иванов А.Ф., Бабуров В.П. Пожарная автоматика М., 1977.
Энциклопедия
Водяная завеса
Водяная завеса — потокводы или её растворов, предназначена для охлаждения и предотвращения распространенияпожара через оконные, дверные и технологическиепроемы, за пределы защищаемого оборудования, зон или помещений, а также обеспечения приемлемых условий дляэвакуации людей при пожаре. Водяная завеса может выполнять раздельно или в совокупности основные функции: экранированиетепловых потоков в целях исключения распространения горения за пределы водяной завесы; охлаждение технологического оборудования в целях исключения нагрева его конструкций до предельно допустимых температур.
Водяные завесы классифицируются следующим образом:
объёмная завеса — плёночный, капельный или струйный поток, который направлен непосредственнооросителем по вертикальной плоскости защищаемого пространства и обеспечивает неприемлемые условия для распространения через него пожара. Примером объёмной завесы является водяной завесы для защиты театральной сцены и занавеса;
контактная завеса — поток, направленный непосредственно оросителем на преграду, с которой жидкость в раздробленном (капельном или струйном) виде падает под действием гравитационных сил в атмосфере окружающей среды, и обеспечивающий неприемлемые условия для распространения через него пожара. Примером контактной завесы является завеса для защиты оконного проёма;
поверхностная завеса — поток, направленный непосредственно оросителем на преграду, по которой жидкость в раздробленном (капельном или струйном) либо плёночном виде стекает под действием гравитационных сил по защищаемой поверхности, и способствующий предупреждению прогрева технологического оборудования до предельно допустимых температур. Примером поверхностной завесы является завеса для орошения резервуара, причём на горящем резервуаре реализуется функция охлаждения стенок, а на смежном с горящим — функция экранирования теплового потока.
Наибольшее распространение водяные завесы получили: на предприятиях по производству пенопластов; для защиты сушилок древесно-стружечных плит; для защиты кабельных каналов, аппаратов и систем, заполненных маслом (например, трансформаторов и турбинных установок); для защиты резервуаров с углеводородным горючим, ректификационных колонн; для обеспечения надлежащих условий по эвакуации людей из горящих зданий, и т. п. Водяные завесы используются также для защиты панорамных лифтов. Весьма актуально устройство завес над окнами и дверями в высотных зданиях, а также для разделения протяжённых помещений (напр., торговых залов на противопожарные отсеки, вместо огнестойких стен). Для создания водяных завес используются специальные оросители или оросители
Водяные завесы классифицируются следующим образом:
объёмная завеса — плёночный, капельный или струйный поток, который направлен непосредственнооросителем по вертикальной плоскости защищаемого пространства и обеспечивает неприемлемые условия для распространения через него пожара. Примером объёмной завесы является водяной завесы для защиты театральной сцены и занавеса;
контактная завеса — поток, направленный непосредственно оросителем на преграду, с которой жидкость в раздробленном (капельном или струйном) виде падает под действием гравитационных сил в атмосфере окружающей среды, и обеспечивающий неприемлемые условия для распространения через него пожара. Примером контактной завесы является завеса для защиты оконного проёма;
поверхностная завеса — поток, направленный непосредственно оросителем на преграду, по которой жидкость в раздробленном (капельном или струйном) либо плёночном виде стекает под действием гравитационных сил по защищаемой поверхности, и способствующий предупреждению прогрева технологического оборудования до предельно допустимых температур. Примером поверхностной завесы является завеса для орошения резервуара, причём на горящем резервуаре реализуется функция охлаждения стенок, а на смежном с горящим — функция экранирования теплового потока.
Наибольшее распространение водяные завесы получили: на предприятиях по производству пенопластов; для защиты сушилок древесно-стружечных плит; для защиты кабельных каналов, аппаратов и систем, заполненных маслом (например, трансформаторов и турбинных установок); для защиты резервуаров с углеводородным горючим, ректификационных колонн; для обеспечения надлежащих условий по эвакуации людей из горящих зданий, и т. п. Водяные завесы используются также для защиты панорамных лифтов. Весьма актуально устройство завес над окнами и дверями в высотных зданиях, а также для разделения протяжённых помещений (напр., торговых залов на противопожарные отсеки, вместо огнестойких стен). Для создания водяных завес используются специальные оросители или оросители
Энциклопедия
Водостойкость
Водостойкость — свойство материала, конструкции, изделия, характеризующее возможность сохранять эксплуатационные и физико-механические характеристики (внешний вид, прочность, эластичность,огнезащитную эффективность и т. д.) при воздействии на них воды. Уровень водостойкости материала определяется результатами соответствующих стандартных испытаний, определяемых условиями эксплуатации. Водостойкость строительных материалов повышают нанесением на их поверхность гидроизоляционного покрытия на полимерной и (или) битумной основах, или путем их гидрофобизации (специальная обработка).
Литература: Баженов С.В., Елисеева Л.В., Булага С.Н. Способы и средства огнезащиты древесины. М., 1999.
Литература: Баженов С.В., Елисеева Л.В., Булага С.Н. Способы и средства огнезащиты древесины. М., 1999.