Энциклопедия - т

   Энциклопедия

Тепловизор

Тепловизор — устройство для бесконтактного наблюдения картины теплового поля объекта и измерения температуры поверхностей объектов (измерительный тепловизор) по их излучению в инфракрасном диапазоне длин волн. Информация, получаемая тепловизором, в виде изображения распределения температуры на поверхности объекта может быть передана и зарегистрирована на экране дисплеи или иного устройства отображения видеоинформации. Тепловизор может быть использован как средство обнаружения аварийных ситуаций посредством выявления перегретых частей конструкций и узлов агрегатов, электрических кабелей и т. д. Возможность обнаружения локального перегрева объектов при наличии нештатной ситуации позволяет выявить обстановку на объекте до момента возникновения аварий и пожара. Чувствительность тепловизора к излучению в инфракрасном диапазоне длин волн дает возможность видеть нагретые объекты в темноте и в условиях задымления, что позволяет производить поиск людей в условиях пожара и скрытых очагов горения. В ряде случаев возможно обнаружение тепловизором людей в условиях завалов. В народном хозяйстве тепловизор можно использовать в качестве прибора ночного видения или для получения температурного поля объектов (например, в целях нахождения мест утечки тепла из зданий и сооружений). Измерительные тепловизоры позволяют определять температуру точек теплового поля, что даёт возможность регистрировать нарушения нормального режима эксплуатируемого объекта или оборудования, обнаруживать дефекты, потери энергии и т. п.

30 августа 2014, 20:51   0    1939   0 0
   Энциклопедия

Тепловое воздействие

Тепловое воздействие — воздействие пламени на тело или вещество с передачей теплоты. Тепловое воздействие может осуществляться тепловым излучением и конвекцией.


Т е п л о в о е и з л у ч е н и е — электромагнитное излучение, испускаемое веществом (телом) за счёт его внутренней энергии; определяется термодинамической температурой и оптическими свойствами вещества. Тепловое воздействие теплового излучения излучающей поверхности на облучаемую поверхность определяется: приведённой степенью черноты системы излучающей и облучаемой поверхностей; температурой излучающей поверхности; температурой облучаемой поверхности; коэффициент облучённости между излучающей и облучаемой поверхностями. Для переноса энергии излучением не требуется среда.


К о н в е к ц и я — перенос теплоты в жидкостях, газах или сыпучих средах потоками вещества. Тепловое воздействие конвективного теплового потока на поверхность определяется коэффициент теплоотдачи и разностью температур конвективного потока среды и поверхности.


Тепловое воздействие играет важную роль при определении пределов огнестойкости строительных конструкций при пожаре, а также при решении задачи защиты личного состава при тушении пожара.


См. также Теплопоглощение.

30 августа 2014, 20:55   0    3233   0 0
   Энциклопедия

Тепловое излучение

Тепловое излучение — электромагнитное излучение, испускаемое пламенем на пожаре. Тепловое излучение представляет собой перенос энергии электромагнитными волнами в относительно узком спектральном интервале, который включает видимый свет и часть ИК-области, создающее тепловой поток от очага пожара к окружающим объектам при длинах волн в интервале 0,4 — 100 мкм. Для реальных пожаров тепловое излучение является доминирующей составляющей теплообмена.


Для восприятия тепловое излучение, как признака пожара (горения), служат тепловые ПИ, на базе которых действуют соответствующие установки пожарной сигнализации, осуществляющие обнаружение пожара с выдачей сигналов и команд, в т. ч. на срабатывание системы оповещения и управления эвакуацией (СОУЭ).


Тепловое излучение, воздействующее на людей и материальные ценности, является первичным опасным фактором пожара.


Лит.: Молчадский И.С. Пожар в помещении. М., 2005.

30 августа 2014, 21:03   0    2275   0 0
   Энциклопедия

Тепловое проявление механического воздействия

Тепловое проявление механического воздействия — явление тепловыделения при трении, ударе и интенсивной турбулизации. При механическом воздействии на материалы выделяется тепловая энергия, которая может привести к возникновению тления или горения этих материалов, вследствие их трения или удара (например, возгорание соломы, намотавшейся на движущиеся детали зерноуборочного комбайна).


Современные способы получения пламени также основаны на трении. На величину трения влияют: нагрузка; скорость перемещения тел, шероховатость их поверхностей; температура, наличие смазки. Количество выделяющегося тепла при трении зависит от химического состава трущихся материалов, наличия примесей, строения материала. Вредное влияние трения уменьшают смазкой, применяют шариковые и роликовые подшипники, заменяя трение скольжения трением качения.


Лит.: Бесчастнов М.В., Соколов В.М., Кац М.И. Аварии в химических производствах и меры их предупреждения. м., 1976; Дубинин А.Д. Энергетика трения и износа деталей машин. М., 1963.

30 августа 2014, 21:11   0    1978   0 0
   Энциклопедия

Тепловое проявление химической реакции

Тепловое проявление химической реакции — явление, при котором теплота химической реакции вызывает воспламенение горючих веществ, являющихся продуктами химической реакции или находящихся вблизи зоны реакции. Иллюзия данного явления могут служить реакции некоторых веществ с водой, продуктами которых являются горючие газы: водород, ацетилен, метан, пропан и др. Например, продуктом реакции металлического натрия с водой является водород, который воспламеняется от теплоты реакции. Теплота реакции между горючими веществами и сильными окислителями, такими как, перекись водорода, фтор, концентрированные азотная и серная кислоты, хлорная кислота и её соли и т. д., может заканчиваться возгоранием горючих веществ. Например, при реакции перманганата калия с глицерином выделяется тепловая энергия, приводящая к возгоранию глицерина.


Тепловое проявление химической реакции следует учитывать при хранении веществ на многономенклатурных складах, не допуская совместное хранения несовместимых друг с другом веществ, реагирующих с выделением тепла, а также изолировать их от влаги воздуха и от атмосферных осадков. На складах с наличием гидрореагирующих веществ запрещается предусматривать пожаротушение водопенными средствами.


Лит: Саушев В. С. Пожарная безопасность хранения химических веществ. М., 1982.

30 августа 2014, 21:17   0    2435   0 0
   Энциклопедия

Тепловой пожарный извещатель

Тепловой пожарный извещатель — автоматический извещатель, реагирующий на определенную повышенную температуру и (или) скорость повышения температуры. Тепловые пожарные извещатели используются для защиты помещений, имеющих пожарную нагрузку с большим тепловыделением при горении. В обычных помещениях применяют, в основном, точечные извещатели. Для защиты протяжённых объектов (кабельных тоннелей, складов и др.) более эффективно применение многоточечных и линейных тепловых извещателей. Тепловые извещатели подразделяют на максимальные, дифференциальные и максимально-дифференциальные. Максимальный тепловой пожарный извещатель — извещатель, формирующий извещение о пожаре при превышении температурой окружающей среды установленного порогового значения, называемого температурой срабатывания. В зависимости от значения температуры срабатывания извещатели подразделяют на классы. Обычно класс извещателя в виде индекса указывают непосредственно в его маркировке. Дифференциальные тепловые извещатели, в отличие от максимальных, не имеют определённой температуры срабатывания. Они выдают тревожное извещение, если скорость роста температуры окружающей среды превышает некоторое пороговое значение. В связи с этим при пламенном (нетлеющем) горении дифференциальные извещатели позволяют обнаружить пожар на более ранней стадии его развития, чем максимальные. Кроме этого, дифференциальные извещатели можно эффективно применять для защиты объектов с пониженной нормальной температурой окружающей среды. В то же время эти извещатели непригодны для обнаружения загораний с медленно развивающимся очагом горения, т. е. при низкой скорости повышения температуры окружающей среды. Не следует также применять дифференциальные извещатели для защиты объектов, на которых возможны значительные перепады температуры, не вызванные возникновением пожара, а связанные, например, с работой систем кондиционирования. При таких условиях возможны ложные срабатывания извещателя. Максимально-дифференциальный тепловой извещатель содержит в себе два канала — максимальный и дифференциальный. Данные каналы включаются по логической схеме «ИЛИ». В качестве чувствительных элементов тепловых извещателей используются различные материалы и элементы, свойства которых зависят от температуры. Это могут быть металлы с памятью формы, биметаллические пластины, герконы, сегнетоэлектрики, полупроводники и т. д.

30 августа 2014, 21:27   0    2335   0 0
   Энциклопедия

Тепловой поток

Тепловой поток — поток энергии (в форме теплоты), обусловленный её самопроизвольным, необратимым переносом в пространстве от более нагретых тел (участков тела) к менее нагретым. Тепловой поток является важнейшей характеристикой пожара, определяющей нагрев и возгорание пожарной нагрузки. Размерность теплового потока совпадает с размерностью мощности и измеряется в ваттах. Тепловой поток, отнесённый к единой поверхности, называется плотностью теплового потока, удельным тепловым потоком или тепловой нагрузкой. Плотность теплового потока — вектор, любая компонента которого численно равна количеству теплоты, передаваемой в единицу времени через единицу площади, перпендикулярной к направлению взятой компоненты. Плотность тепловой поток зависит от: градиента температуры в рассматриваемой точке пространства и свойств среды (коэффициент теплопроводности) в неподвижной среде, при этом механизм теплообмена — молекулярный; скорости течения в рассматриваемой точке в движущейся среде, при этом механизм теплообмена — конвективный; излучающих и поглощающих свойств (степени черно- ты) и температуры поверхностей тел, при этом механизм теплообмена между ними — радиационный; излучающих, поглощающих и рассеивающих свойств среды (как спектральных, так и интегральных), при этом механизм локального теплообмена в среде — радиационный (см. Тепловое излучение).


Лит.: Молчадский И.С. Пожар в помещении. М., 2005.

30 августа 2014, 21:37   0    5594   0 0
   Энциклопедия

Теплогенерирующие аппараты

Теплогенерирующие аппараты — устройства, предназначенные для сжигания топлива и передачи тепла окружающему помещению или теплоносителю. Теплогенерирующие аппараты классифицируются по назначению, видам топлива, типу теплоносителя, мощности. К ним относятся: водогрейные котлы и колонки, воздухонагреватели, «тепловые пушки», каминные вставки, печи отопления, керогазы, керосинки, теплогенераторы сушильных агрегатов и другие аппараты. Теплогенерирующие аппараты, как правило, изготавливают в заводских условиях из чугуна или стали. В состав аппаратов входят следующие элементы конструкции: камера сгорания топлива, система топливоподачи, система воздухоподачи, система отвода продуктов сгорания, система безопасности и контроля. Теплогенерирующие аппараты используются для поквартирного теплоснабжения, сушки помещений и материалов, приготовления пищи и т. д. Их пожарная опасность связана с применением топлива, особенно газообразного или жидкого, с наличием пламени и нагретых поверхностей.


Теплогенерирующие аппараты перед применением проходят приёмочные, периодические или сертификационные испытания, о чём в паспорте должна быть сделана соответствующая отметка.


Лит.: НПБ 252-98. Аппараты теплогенерирующие, работающие на различных видах топлива. Требования пожарной безопасности. Методы испытаний; Никитин Ю.А. Пожарная опасность теплогенерирующих установок. М., 1989; Постнов А.М. Строительные воздухонагреватели. М., 1977

30 августа 2014, 21:45   0    3861   0 0
   Энциклопедия

Теплодымокамера

Теплодымокамера — учебный тренировочный комплекс, в котором имитированы фрагменты обстановки реального места пожара. Теплодымокамеры подразделяются на стационарные и мобильные. Тренировки газодымозащитников в теплодымокамерах направлены на формирование у них психологической готовности к действиям в экстремальной ситуации. В процессе таких тренировок газодымозащитники совершенствуют профессиональные навыки, учатся правильно применять знания и умения на практике. Моделируемые ситуации максимально приближены к реальным экстремальным условиям боевой работы. В них включены элементы предельной сложности, предусмотрена возможность выбора решений, вариантов физических и эмоциональных нагрузок. Все это позволяет добиться полного напряжения физических сил, умственных способностей и воли пожарного на каждой тренировке. В теплодымокамерах размещают следующее оборудование (тренажёры): эргометры велосипедного типа, беговые дорожки, вертикальные эргометры, бесконечные лестницы, ступеньку для проведения степ-теста. Тепловая тренировка газодымозащитников в процессе боевой подготовки состоит из ежемесячной тренировки в теплокамере с отработкой физических упражнений на снарядах и тренажёрах и тренировки в парильной или сауне. В дымокамерах, как правило, монтируют лабиринт, представляющий собой совокупность препятствий, имитирующих различную планировку помещений, перепад высот, стеснённость пространства, тупиковые зоны. Задымление предусматривается только в тренировочных помещениях и создаётся с помощью сети обособленных дымоводов, идущих от генератора дыма, работающего на твёрдом топливе. В качестве дымообразующих средств могут использоваться также различные дымовые шашки и другие составы, не вызывающие у газодымозащитников отравлений и ожогов. Предусматривают телефонизацию и радиофикацию дымокамер, громкоговорящую связь, воспроизведение шумовых эффектов. Перспективным направлением современной организации тренировочного процесса подразделений пожарной охраны является создание передвижных, мобильных тренировочных комплексов, включающих в себя тренажёрные отсеки, в которых проводятся тренировки по-жарных в условиях повышенных температур, а также отсеки с системой лабиринта, предназначенного для отработки навыков преодоления различных препятствий при световых и звуковых эффектах.

31 августа 2014, 14:59   0    4798   0 0
   Энциклопедия

Теплозащита

Теплозащита — совокупность методов и средств защиты конструкций, оборудования, аппаратов и т. п. от повышенного нагрева или чрезмерного охлаждения. Теплозащита применяется для снижения пожарной опасности конструкций и оборудования посредством уменьшения тепловых нагрузок на них. Например, при трубо-печных работах широкое применение получило устройство разделок — утолщений стенки печи (камина) или дымового канала в месте соприкосновения её с конструкцией здания, выполненных из негорючего или трудногорючего материала. Весьма важной разновидностью теплозащитьт является огнезащита строительных конструкций (см. Огнезащита). Существуют активные и пассивные методы теплозащиты. При использовании активных методов газообразный или жидкий охладитель подаётся к защищаемой поверхности и берёт на себя основную часть поступающего к поверхности тепла. В зависимости от способа подачи охладителя к защищаемой поверхности различают следующие типы теплозащиты: конвективное (регенеративное), плёночное и пористое охлаждение. При пассивных методах теплозащиты воздействие теплового потока «воспринимается» с помощью специальным образом сконструированной внешней оболочки или посредством специальных покрытий, наносимых на основную конструкцию. В зависимости от способа «восприятия» теплового потока пассивные методы теплозащиты разделяются: на теплопоглощение оболочкой; «радиационную» теплозащиту — сохранение при высоких температурах механической прочности; теплозащиту с помощью разрушающихся покрытий. Примером разрушающихся теплозащитных покрытий могут служить стеклопластики и другие пластмассы на органических и кремнийорганических связующих.


Лит.: Основы теплопередачи в авиационной и ракетно-космической технике / Под ред. В.К. Кошкина. М. 1975; Полежаев Ю.В., Юревич Ф.Б. Тепловая защита. М., 1975; Правила производства трубопечных работ. М., 2002.

01 сентября 2014, 17:49   0    2345   0 0